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SUMMARY

Turkey is one of the major citrus producing countries in the Mediterranean Basin. Approximately 
90% of the total citrus production in Turkey is carried out in the Mediterranean Region. Soil of the 
Mediterranean region is calcareous and because sour orange is tolerant to high pH, the rootstocks 
is widely used in this region. Sour orange rootstock, which is well adapted to calcareous soils, has 
positive effects on yield and quality, but is extremely sensitive to Citrus Tristeza Virus disease. 
Because sour orange is very sensitive to tristeza, there is a need to find an alternative rootstock that 
is well adapted to calcareous soils and has good fruit yield and quality. For this purpose, 16 citrus 
rootstock and genotypes could be used as a rootstock, were tested against high-pH conditions 
for iron chlorosis in growth chamber. At the end of this experiment, Tuzcu 891 sour orange, 
Gou Tou sour orange and Antalya Cleopatra mandarin were the most tolerant; Duncan grapefruit, 
Tuzcu 31-31 sour orange, Sunki mandarin, Nasnaran mandarin, Cleopatra mandarin x Swingle 
citrumelo hybrid, Carrizo citrange, C-35 citrange and Marumi kumquat were moderate tolerant; 
Volkameriana, Swingle citrumelo, Pomeroy trifoliate and Sarawak bintangor were sensitive; and 
a local trifoliate was found to be the most sensitive to iron chlorosis in a high pH medium.
Index terms: rootstock, iron deficiency, leaf chlorophyll concentration.

Resposta de porta-enxerto de Citrus a deficiência de ferro sob condições de alto pH

RESUMO

A Turquia é um dos principais países produtores de cítricos da Bacia do Mediterrâneo. 
Aproximadamente 90% da produção total de citros na Turquia é realizada na região do Mediterrâneo. 
O solo da região do Mediterrâneo é calcário e devido a laranja azeda ser tolerante a condições de 
alto pH, estes porta-enxertos são amplamente utilizados nesta região. O porta-enxertos de laranja 
azeda, no qual é se adapta bem aos solos calcários, tem efeitos positivos sobre o rendimento e a 
qualidade de frutos, mas é extremamente sensível à doença do vírus da tristeza dos citros. Como a 
laranja azeda é muito sensível à tristeza, é necessário encontrar um porta-enxerto alternativo que 
seja bem adaptado aos solos calcários e que tenha bons rendimentos e qualidade dos frutos. Para 
este fim, 16 porta-enxertos e genótipos de citros que poderiam ser usados como porta-enxertos, 
foram testados em condições de pH elevado para clorose causada pela deficiência de ferro em 
câmara de crescimento. No final deste experimento, as laranjas azedas Tuzcu 891 e Gou Tou e a 
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disease comes to Turkey, the citrus growing areas could 
be destroyed. Although existing trifoliate orange and 
their hybrids are tolerant to CTV, these rootstocks may 
cause several microelement deficiencies in high pH soils, 
especially for Fe.

The present study evaluated 16 citrus genotypes used 
as rootstocks in citriculture in order to determine the 
tolerance levels to lime induced iron deficiency under 
controlled conditios. The tolerance levels were assessed 
by plant growth, leaf chrolophyll concentration and leaf 
total and active iron concentrations.

MATERIAL AND METHODS

Plant material and experiment conditions

Sixteen citrus genotypes studied in this experiment: Tuzcu 
31-31 sour orange (Citrus aurantium L.), Tuzcu 891 sour 
orange (Citrus aurantium L.), Gou Tou sour orange 
(Citrus aurantium L. var. Gou Tou), Volkameriana (Citrus 
volkameriana V. Ten. & Pasq), Duncan grapefruit (Citrus 
paradisi Macf.), Sunki mandarin [Citrus sunki (Hayata) 
hort. ex Tanaka], Cleopatra mandarin (Citrus reshni Tan.), 
Nasnaran (Citrus amblycarpa Ochse), Sarawak bintangor 
(Citrus reticulata Blanco x Citrus aurantium L.), Marumi 
kumquat (Fortunella japonica), Swingle citrumelo (Citrus 
paradisi Macf. var. Duncan x Poncirus trifoliata (L.) 
Raf), Cleopatra mandarin x Swingle citrumelo hybrid 
[(Citrus reshni Tan.,) x (Citrus paradisi Macf. x Poncirus 
trifoliate var. Duncan Raf.], Carrizo citrange [Citrus 
sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.], C-35 
citrange [Poncirus trifoliata (L.) Raf. x Citrus sinensis. 
Osb. Ruby], Pomeroy trifoliate (Poncirus trifoliata var. 
Pomeroy) and a local trifoliate (Poncirus trifoliata). 
Seeds were obtained from Cukurova University, Faculty 
of Agriculture ‘Tuzcu Citrus Collection’ and ‘France 
Citrus Collection’ (Agricultural Research Station, SRA; 
Institut National de la Recherche Agronomique, INRA).

Seeds were germinated in the dark at 22 °C in plastic 
trays with sterilised peat. After germination, the seedlings 
were grown in peat for eight weeks in a greenhouse 

INTRODUCTION

World citrus production was 128,922,136 tons in 2011. 
Due to the steady increase in citrus production in Turkey, 
3,613,770 million tons of citrus fruits were produced in 
2011. From the total of citrus fruits produced in Turkey, 
1,730,150 tons were oranges, 872,251 tons were mandarins, 
790,211 tons were lemons and 218,988 were grapefruit 
(FAO, 2015). Citrus production and consumption have 
been increasing strongly in Turkey, because of the suitable 
ecological conditions for fruit quality of the Mediterranean 
region of Turkey.

Mediterranean countries have a suitable climate for 
citrus but it is estimated that from 20 to 50% of fruit trees 
grown in the Mediterranean basin suffer from iron (Fe) 
deficiency. The most prevalent cause of Fe deficiency in 
this region is the presence of high levels of carbonate ions 
in the calcareous soils (Pestana et al., 2005). Such soils 
contain high bicarbonate (HCO3

-) concentrations in 
their soil solution, which are characterized by a high pH 
(Mengel, 1994). These soils often have more than 20% of 
calcium and magnesium carbonates and are strongly 
buffered, with pH between 7.5 and 8.5 (Pestana et al., 
2005). Fe uptake is highly dependent on soil pH and 
iron activity in solution decreases 1000-fold for each 
pH unit rise to reach a minimum within the range 
from 7.4 to 8.5 (Byrne et al., 1995).

Fe is an essential element for all living organisms. 
It is required by many functional molecules involved in 
a great variety of metabolic pathways, such as nitrogen 
fixation, ribonucleotide reduction, electron transfer, 
activation and transport of oxygen, as well as inactivation 
of reduced forms of oxygen (Eisenstein & Blemings, 1998; 
Zocchi et al., 2007).

Citrus is sensitive to iron chlorosis, in which is a 
common nutritional problem in high pH soil conditions 
(Chouliaras et al., 2004). Sour orange rootstock is well 
adapted to calcerous and other soil types and is used widely 
in the Mediterranean basin (Özsan, 1979). Trees grafted 
onto sour orange produce excellent quality fruit, but are 
susceptible to Citrus Tristeza Virus (CTV), a very serious 
disease that is insect-transmitted. Sour orange rootstock 
is used in 96% of the Turkish citrus growing area. If this 

tangerina Antalya Cleopatra foram os mais tolerantes; pomelo Duncan, laranja azeda Tuzcu 31-31, tangerina Sunki, 
tangerina Nasnaran, hibrido entre tangerina Cleopatra x citrumelo Swingle, citrange Carrizo, citrange C-35 e kumquat 
Marumi foram moderadamente tolerantes; Volkameriano, citrumelo Swingle, trifoliata Pomeroy e tangor Sarawak 
foram sensíveis; e um trifoliata local foi considerado o mais sensível à clorose de ferro em um meio de pH elevado.
Termos de indexação: porta-enxerto, deficiência de ferro, concentração de clorofila.
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Indirect leaf chlorophyll concentration

Indirect leaf chlorophyll (Chl) concentration was estimated 
using a portable SPAD-502 meter (Minolta, Osaka, Japan) 
as SPAD readings. Readings were taken on the two youngest 
fully expanded leaves of each plant. SPAD readings were 
used to estimate leaf Chl concentration because there is a 
strong relationship between SPAD readings and Chl levels 
in citrus leaves (Jifon et al., 2005).

Total and active iron concentrations

At the end of the experiment, for total Fe concentration, 
fully expanded leaves were ground, ashed at 550 °C and 
digested in acid solution (3.3% HCl, v/v). For active Fe 
concentration, leaves were ground and shaked in 1 N HCl 
extraction solution (1:10, v/v) for two hours. The total and 
active concentrations of Fe in leaves were determined by 
ICP (Inductively-Coupled Plasma, PerkinElmer, Optima 
7000 DV).

Statistical analysis

The experiment was arranged as a complete randomized 
design and the data were subjected to ANOVA. Significant 
differences between means were evaluated by using 
Tukey’s multiple range test at P ≤ 0.01. Also control 
and (-)Fe treatment were compared using “Student’s t 
test”. All statistical analyses were performed by using 
SAS v9.00 software.

RESULTS

Plant growth

Leaf number was significantly affected by high pH, 
plants grown in high pH conditions were lighter and with 
fewer leaves. The local trifoliate was determined to be 
the most affected genotype for iron chlorosis, whereas 
Gou Tou sour orange, Tuzcu 891 sour orange and Antalya 
Cleopatra mandarin were the least affected regarding leaf 
number observations. Control and (-)Fe treatments of 
Tuzcu 31-31 sour orange, Nasnaran mandarin, Swingle 
citrumelo, Carrizo citrange, Pomeroy trifoliate and the 
local trifoliate genotypes were significantly different 
according to a t-test performed (Table 1).

with day/night temperatures of 26/22 °C, and a relative 
humidity of 65%. After eight weeks, uniform seedlings 
were transferred in quartz sand in a growth chamber and 
plant fresh weight, plant height and leaf numbers were 
recorded.

After transplantation of the plants to quartz sand all plants 
were irrigated with a solution of the following composition 
for 8 months: 1.25 mM KNO3, 0.625 mM KH2PO4, 
2.00 mM MgSO4, 2.00 mM Ca(NO3)2, EDTA-Fe (125 µM), 
25.0 µM H3BO3, 2.00 µM MnSO4, 2.00 µM ZnSO4, 
0.50 µM CuSO4, 0.065 µM (NH4)6Mo7O24. The pH and 
EC of the final solution were adjusted to 5.8 and 1.05 mS 
respectively. Due to the size of the seedlings in the 
begining of the experiment, half-strength solutions were 
used during the first three months. After this period, the 
solutions were then replaced with full strength solutions. 
Stress application was started 11 months after plants were 
transplanted to quartz sand.

In order to provide Fe deprived conditions [(-)Fe treatment], 
the solution was adjusted to pH 7.8±0.1 by adding 
2 g L-1 CaCO3 + 3 mM NaHCO3 to the nutrient soluiton 
and 10-5 M Fe was added (EC=0.967). For control plants 
10-4 M Fe EDTA was added to the nutrient solution 
and the pH of the control nutrient was adjusted to 
6.0±0.1. Control and (-)Fe treatment were imposed for 
four months.

The experiment was carried out in a growth chamber. 
Growth chamber conditions included a relative humidity 
65%, the photosynthetic photon flux (PPF) at the top of 
the plant canopy (approximately 20 cm above the plants) 
averaged 300±25 μmol m-2 s-1 and was provided by cool 
white fluorescent lamps. Light period was 16/8 h with a 
26 °C day and 20 °C night. The experiment was arranged 
as in a complete randomized design, 6 replications, 
and 5 plants in each replication. A total of 30 plants 
were used in both control and (-)Fe treatments for each 
genotype.

Iron chlorosis scale

The seedlings were rated for chlorosis based on 
their fully expanded new leaves as follows: 1=healthy 
green leaves; 2=yellowish-green interveinal areas, green 
veins; 3= greenish-yellow interveinal areas, green veins; 
4= yellow interveinal areas, green veins; 5= yellow-white 
interveinal areas, pale green veins, some defolation 
(Byrne et al., 1995).
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Local trifoliate genotypes showed significant differences 
comparing the control plants and those under high pH. 
Fe chlorosis affected these genotypes with lower plant 
fresh weight (Table 3).

Leaf chlorophyll concentrations and iron 
chlorosis scale

The most obvious symptom of Fe deficiency in plants 
is commonly called iron chlorosis. At the beginning of the 
experiment, the plants had no visual symptoms of iron 
deficiency. The high pH treatment created characteristic 
visual symptoms of Fe chlorosis after 30 days on local 
trifoliate firstly. At the end of the experiment extremely 
chlorotic leaves were observed on local trifoliate and 
Pomeroy trifoliate, whereas the healthiest green leaves 
were determined on Tuzcu 891 sour orange in the high 
pH treatment. In the student test, except for Tuzcu 891 
sour orange, all genotypes showed significant differences 
(Table 4). The SPAD measurements were used as an 
estimate of leaf Chl concentration, because there is a 
positive linear relationship between these two parameters 
(r2 > 0.8, Jifon et al., 2005). Leaves of local trifoliate 

All genotypes in this experiment resulted as a significant 
decrease in plant height under Fe deprived conditions and 
the greatest decline was observed in Swingle citrumelo 
and the local trifoliate (Table 2). Gou Tou sour orange 
was determined to be the most tolerant genotype, in terms 
of plant height (Table 2 In the student test we compared 
the effect of iron chlorosis between control and (-)Fe 
treatment. According to a t test, significant differences 
were not determinted in plant height between control and 
(-)Fe treatments in Tuzcu 891 sour orange, Gou Tou sour 
orange, Sunki mandarin, Carrizo citrange, C-35 citrange 
and Duncan grapefruit. The other genotypes were grouped 
differently (Table 2).

In terms of plant fresh weight under Fe deprived 
conditions, more weight loss was observed in local 
trifoliate, Tuzcu 31-31 sour orange, Nasnaran mandarin 
and Volkameriana; whereas less weight loss was observed 
in Antalya Cleopatra mandarin and Sunki mandarin 
(Table 3). In this experiment Tuzcu 31-31, Tuzcu 891 and 
Gou Tou sour oranges showed different responses to Fe 
chlorosis. Tuzcu 31-31 sour orange had fewer leaves, 
shorter plant height and lower plant weight than Tuzcu 
891 and Gou Tou sour oranges. Tuzcu 31-31 sour orange, 
Volkameriana, Nasnaran mandarin, Swingle citrumelo and 

Table 1. Leaf number of genotypes under Fe deprived conditions
Genotype Control (-)Fe t test

Tuzcu 31 31 sour orange 31.10 ef(1) A(2) 23.25 e B *
Tuzcu 891 sour orange 32.47 ef 31.50 cde n.s.
Gou tou sour orange 49.40 bcd 48.40 a n.s.
Volkameriana 37.10 cdef 31.50 cde n.s.
Sunki mandarin 45.00 bcde 40.89 abc n.s.
Cleopatra mandarin 51.80 abc 48.66 a n.s.
Nasnaran mandarin 58.30 ab A 39.80 abcd B *
Swingle citrumelo 64.70 a A 47.90 ab B *
C X S 40.20 cdef 36.11 cd n.s.
Carrizo citrange 52.25 abc A 42.44 abc B *
Pomeroy trifoliate 40.10 cdef A 32.80 cde B *
C-35 citrange 45.57 bcde 40.40 abc n.s.
Marumi kumquat 33.56 ef 28.30 de n.s.
Sarawak bintangor 29.30 f 23.80 e n.s.
Duncan grapefruit 39.42 cdef 36.50 bcd n.s.
Local trifoliate 34.45 def A 22.90 e B *
Significance(3) ** ** -
D (0.01) 15.25 11.69 -

(1)Means followed by different letters in the same column are significantly different (Tukey’s multiple range test, α=0.01); 
(2)Means followed by different letters in the same row are significantly different (Student’s t test, P≤0.05); (3)n.s.: not significant; 
**P≤0.01; *P≤0.05.
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Table 2. Plant height (cm plant-1) of genotypes under Fe deprived conditions
Genotype Control (-)Fe t test

Tuzcu 31 31 sour orange 50.15 efgh(1) A(2) 33.36 efgB *
Tuzcu 891 sour orange 55.37 defg 51.40 cde n.s.
Gou tou sour orange 48.20 efg 47.95 cdef n.s.
Volkameriana 88.20 ab A 60.30 bcd B *
Sunki mandarin 53.65 defg 50.30 cdef n.s.
Cleopatra mandarin 58.67 defg A 46.05 defg B *
Nasnaran mandarin 46.50 fg A 29.75 fg B *
Swingle citrumelo 86.80 abc A 49.77 cdef B *
C X S 64.45 cdef A 52.30 cde B *
Carrizo citrange 106.05 a 97.13 a n.s.
Pomeroy trifoliate 91.97 ab A 78.00 ab B *
C-35 citrange 70.57 bcde 68.40 bc n.s.
Marumi kumquat 36.95 g A 25.40 g B *
Sarawak bintangor 41.90 fg A 29.25 fg B *
Duncan grapefruit 46.60 fg 37.22 efg n.s.
Local trifoliate 75.85 bcd A 47.05 cdef B *
Significance(3) ** ** -
D (0.01) 22.84 21.42 -

(1)Means followed by different letters in the same column are significantly different (Tukey’s multiple range test, α=0.01); 
(2)Means followed by different letters in the same row are significantly different (Student’s t test, P≤0.05); (3)n.s.: not significant; 
**P≤0.01; *P≤0.05.

Table 3. Plant fresh weight (g plant-1) of genotypes under Fe deprived conditions
Genotype Control (-)Fe t test

Tuzcu 31 31 sour orange 34.68 a-d(1) A(2) 17.68 c-fB *
Tuzcu 891 sour orange 46.15 a 39.04 a n.s.
Gou tou sour orange 40.68 abc 35.95 ab n.s..
Volkameriana 45.93 ab A 26.05 bcd B *
Sunki mandarin 29.87 bcde 26.91 abc n.s.
Cleopatra mandarin 26.32 c-f 24.29 bcd n.s.
Nasnaran mandarin 26.81 c-f A 14.16 def B *
Swingle citrumelo 37.87 a-d A 24.46 bcd B *
C X S 22.46 def 20.14 cde n.s.
Carrizo citrange 41.17 abc 36.19 ab n.s.
Pomeroy trifoliate 22.47 def 18.38 cdef n.s.
C-35 citrange 30.77 a-e 26.52 bcd n.s.
Marumi kumquat 10.99 f 7.05 f n.s.
Sarawak bintangor 12.49 f 9.37 ef n.s.
Duncan grapefruit 29.20 cde 23.80 bcd n.s.
Local trifoliate 15.47 ef A 6.32 f B *
Significance(3) ** ** -
D (0.01) 16.18 12.48 -

(1)Means followed by different letters in the same column are significantly different (Tukey’s multiple range test, α=0.01); 
(2)Means followed by different letters in the same row are significantly different (Student’s t test, P≤0.05); (3)n.s.: not significant. 
**P≤0.01; *P≤0.05.
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and Duncan grapefruit, all genotypes showed significant 
differences (Figure 1).

DISCUSSION

For growth parameters, the number of leaves, plant 
height and plant fresh weight were the most affected 
by the high pH treatment. Previous studies also claim 
that bicarbonate ions hamper the development of plant 
(Mengel, 1994; Sabir et al., 2010; Cimen et al., 2014). 
The growth responses of the genotypes to iron chlorosis 
were different from each other. In terms of growth 
parameters, Tuzcu 891 and Gou Tou sour oranges were 
least affected under Fe deprived conditions, whereas 
Swingle citrumelo and Local trifoliate were the most.

However, these growth parameters may not be sufficient 
to evaluate tolerance to Fe chlorosis of citrus rootstocks 
(Pestana et al., 2005). Several authors have classified 
Fe tolerance of citrus rootstocks supported on growth 
and chlorosis parameters of shoots (Hamzé et al., 1986; 
Sudahono et al., 1994; Byrne et al., 1995). They considered 

had the lowest Chl concentration followed by Pomeroy 
trifoliate and Swingle citrumelo, while leaves of Tuzcu 
31-31, Gou Tou and Tuzcu 891 sour oranges had the highest 
Chl concentration. In addition, leaf Chl concentrations 
of leaves of Tuzcu 31-31, Gou Tou and Tuzcu 891 sour 
oranges were not significantly different according to 
t-tests (Table 5).

Total and active iron concentrations

In general, the greatest decreases in terms of total and 
active Fe concentrations were observed in the ‘Local 
trifoliate’ plants whereas the lowest were observed in the 
Tuzcu 31-31 sour orange plants. Sarawak bintangor and 
Pomeroy trifoliate also showed decreases in both leaf total 
and active Fe concentrations. The highest decrease in terms 
of active iron concentration were observed respectively 
on ‘local trifoliate’ and Sarawak bintangor plants, the 
lowest on Marumi kumquat and Tuzcu 31-31 sour orange. 
Comparing the control plants and those under high pH, 
except for Tuzcu 31-31 sour orange, Marumi kumquat 

Table 4. Iron chlorosis scale(4) of genotypes under Fe deprived conditions
Genotype Control (-)Fe t test

Tuzcu 31 31 sour orange 1.00 1.05 f(1) n.s.
Tuzcu 891 sour orange 1.00 1.20 f n.s.
Gou tou sour orange 1.00 1.06 f n.s.
Volkameriana 1.00 B(2) 2.40 cde A *
Sunki mandarin 1.00 B 2.00 def A *
Cleopatra mandarin 1.00 B 1.80 ef A *
Nasnaran mandarin 1.00 B 1.70 ef A *
Swingle citrumelo 1.00 B 3.20 bc A *
C X S 1.00 B 1.83 ef A *
Carrizo citrange 1.00 B 2.00 def A *
Pomeroy trifoliate 1.00 B 4.00 ab A *
C-35 citrange 1.00 B 2.20 cdef A *
Marumi kumquat 1.00 B 3.00 bcd A *
Sarawak bintangor 1.00 B 2.66 cde A *
Duncan grapefruit 1.00 B 2.57 cde A *
Local trifoliate 1.00 B 5.00 a A *
Significance(3) Ö.D. ** -
D (0.01) - 1.15 -

(1)Means followed by different letters in the same column are significantly different (Tukey’s multiple range test, α = 0.01); 
(2)Means followed by different letters in the same row are significantly different (Student’s t test, P≤0.05); (3)n.s.: not significant; 
**P≤0.01; *P≤0.05; (4)Scale values; 1 = healthy gren leaves; 2 = yellowish-green interveinal areas, green veins; 3 = greenish-
yellow interveinal areas, green veins; 4 = yellow interveinal areas, green veins; 5 = yellow-white interveinal areas, palegreen 
veins, some defolation (Byrne et al.,1995).
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Previous studies that examined the responses of citrus 
rootstocks to iron chlorosis, SPAD and total Chl content 
showed a significant reduction when rootstocks were 

that volkameriana, and sour orange plants were tolerant; 
Taiwanica and Carrizo citrange less tolerant to Fe chlorosis, 
whereas the Volkameriana rootstocks were more sensitive.

Table 5. SPAD readings of genotypes under Fe deprived conditions
Genotype Control (-)Fe t test

Tuzcu 31 31 sour orange 66.68 a(1) A(2) 52.37 a B *
Tuzcu 891 sour orange 48.92 de 46.09 ab n.s.
Gou tou sour orange 53.13 bcde A 43.46 abc B *
Volkameriana 50.92 cde A 31.72 de B *
Sunki mandarin 48.59 de A 38.03 bcd B *
Cleopatra mandarin 65.42 a A 52.74 a B *
Nasnaran mandarin 43.39 e A 38.13 bcd B *
Swingle citrumelo 64.28 a A 35.24 cd B *
C X S 66.57 a A 45.80 ab B *
Carrizo citrange 61.45 ab A 46.65 ab B *
Pomeroy trifoliate 65.56 a A 23.87 e B *
C-35 citrange 60.23 abc A 37.94 bcd B *
Marumi kumquat 64.42 a A 48.27 ab B *
Sarawak bintangor 59.14 abc A 31.37 de B *
Duncan grapefruit 61.25 ab A 49.13 a B *
Local trifoliate 58.10 abcd A 10.73 f B *
Significance(3) ** ** -
D (0.01) 10.07 10.52 -

(1)Means followed by different letters in the same column are significantly different (Tukey’s multiple range test, α=0.01); 
(2)Means followed by different letters in the same row are significantly different (Student’s t test, P≤0.05); (3)n.s.: not significant; 
**P≤0.01; *P≤0.05.

Figure 1. Total and active iron concentrations (ppm) of genotypes under Fe deprived conditions. Data represent the 
results of a one way ANOVA in each treatment. Significant differences between genotypes were evaluated by using 
Tukey’s multiple range test at P ≤ 0.01.
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there is no relationship between these two parameters 
or an existing relationship is not linear. For this reason, 
it was claimed that chlorotic leaves can contain high 
total iron concentration and that these chlorotic leaves 
can not be used to diagnosis iron deficiency (Razeto, 
1982; Hurley et al., 1986; Sudahono et al., 1994; 
Mohammad et al., 1998; Abadia et al., 2000; Razeto & 
Valdes, 2006; Ferrarezi et al., 2007). In addition, the iron 
paradox was not experienced under controlled conditions 
(Morales et al., 1998). In this study, the iron paradox was 
not observed on the genotpyes, total iron concentration 
and chlorosis paralelled each other.

The majority of iron uptake of plants is as Fe+3 and 
Fe+2 that are the metabolically active form of Fe (Kacar & 
Katkat, 2009). Therefore, active iron concentrations were 
appropriate to determine iron status of the plant and this 
concentration reflected plant iron status (Sudahono et al., 
1994; Mohammad et al., 1998; Chouliaras et al., 2004; 
Torres et al., 2006; Çelik & Katkat, 2007; Ferrarezi et al., 
2007). Active iron concentrations of genotypes in the 
study also reflected plant’s iron status just as did total 
iron concentrations.

In conclusions, 16 citrus genotypes were evaulated for iron 
chlorosis, in this study. The number of leaves, plant height 
and plant fresh weight were reduced for all rootstocks under 
Fe deprived conditions high pH conditions. Fe deprived 
plants had lower total and active iron concentration than 
control plants. Genotypes classified as more tolerant than 
others were Tuzcu 891 sour orange, Gou Tou sour orange, 
Antalya Cleopatra mandarin and Duncan grapefruit; Tuzcu 
31-31 sour orange, Sunki mandarin, Nasnaran mandarin, 
Cleopatra mandarin x Swingle citrumelo hybrid, Carrizo 
citrange, C-35 citrange and Marumi kumquat as medium 
tolerant; Volkameriana, Swingle citrumelo, Pomeroy 
trifoliate and Sarawak bintangor as sensitive and local 
trifoliate was classified as the most sensitive.
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